Nguyễn Tấn Tùng [56394] ● Đã mua 1 khóa học 02/12/2018 1:34:43 PM Xin biến đổi chi tiết đoạn này ạ Toán Học 1 câu trả lời 1117 lượt xem
Giải thích.
Có $\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}}.{{\left( 2018+\sin x \right)}^{\cos x}} \right]dx}=\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}} \right]dx}+\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\sin x \right)}^{\cos x}} \right]dx}.$
Tính $\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\sin x \right)}^{\cos x}} \right]dx}:$
Đặt $t=\frac{\pi }{2}-x\Rightarrow dt=-dx.$
Khi đó $\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\sin x \right)}^{\cos x}} \right]dx}=-\frac{1}{2}\int\limits_{\frac{\pi }{2}}^{0}{\ln \left[ {{\left( 2018+\sin \left( \frac{\pi }{2}-t \right) \right)}^{\cos \left( \frac{\pi }{2}-t \right)}} \right]}dt$
$=\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos t \right)}^{\sin t}} \right]dt}=\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}} \right]dx.}$
Vậy $\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}} \right]dx}+\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\sin x \right)}^{\cos x}} \right]dx}=\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}} \right]dx}.$
Hay $\frac{1}{2}\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}}.{{\left( 2018+\sin x \right)}^{\cos x}} \right]dx}=\int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}} \right]dx}.$
Mà
$\begin{align} & \int\limits_{0}^{\frac{\pi }{2}}{\ln \left[ {{\left( 2018+\cos x \right)}^{\sin x}} \right]dx}=\int\limits_{0}^{\frac{\pi }{2}}{\sin x\ln \left( 2018+\cos x \right)dx}=-\int\limits_{0}^{\frac{\pi }{2}}{\ln \left( 2018+\cos x \right)d\left( \cos x \right)} \\ & =-\int\limits_{1}^{0}{\ln \left( 2018+x \right)dx}=\int\limits_{0}^{1}{\ln \left( 2018+x \right)d\left( x+2018 \right)}=\left. \left( x+2018 \right)\ln \left( 2018+x \right) \right|_{0}^{1}-\int\limits_{0}^{1}{\frac{2018+x}{2018+x}dx} \\ & =2019\ln 2019-2018\ln 2018-1. \\\end{align}.$