tdh260504 [163791]
23/11/2022 2:41:52 PM

biện luận hpt tuyến tính

Đại số tuyến tính 2 câu trả lời 63 lượt xem

2 Câu trả lời

Lời giải
Đã ghim
Đặng Thành Nam [6119] Publisher, Admin Đã mua 39 khóa học 17:15 23-11-2022
0
Lời giải
Đã ghim
Đặng Thành Nam [6119] Publisher, Admin Đã mua 39 khóa học 17:11 23-11-2022

Giải và biện luận hệ phương trình $\left\{ \begin{gathered} x + 2y + mz = a \hfill \\ 2x - 7y + \left( {m - 1} \right)z = 1 \hfill \\ - 4x + y - mz = b \hfill \\ \end{gathered} \right.$ theo các tham số $a,b$ và $m.$

Giải. Biến đổi sơ cấp cho ma trận hệ số mở rộng

$\overline A = \left( {\begin{array}{*{20}{c}} 1&2&m&a \\ 2&{ - 7}&{m - 1}&1 \\ { - 4}&1&{ - m}&b \end{array}} \right)\xrightarrow{\begin{subarray}{l} {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \\ {\mathbf{4}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&2&m&a \\ 0&{ - 11}&{ - m - 1}&{ - 2a + 1} \\ 0&9&{3m}&{4a + b} \end{array}} \right)$

$\xrightarrow{{\dfrac{{\mathbf{9}}}{{{\mathbf{11}}}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}}}}\left( {\begin{array}{*{20}{c}} 1&2&m&a \\ 0&{ - 11}&{ - m - 1}&{ - 2a + 1} \\ 0&0&{\dfrac{3}{{11}}\left( {8m - 3} \right)}&{\dfrac{1}{{11}}\left( {26a + 11b + 9} \right)} \end{array}} \right)$

+ Nếu $m\ne \dfrac{3}{8}\Rightarrow r\left( A \right)=r\left( \overline{A} \right)=3$ nên hệ có nghiệm duy nhất xác định bởi

$x=\dfrac{-6am-9bm-a+2b-3m}{3\left( 8m-3 \right)};y=\dfrac{2am-bm-4a-b-3m}{3\left( 8m-3 \right)};z=\dfrac{36a+11b+9}{3\left( 8m-3 \right)}$

+ Nếu $m=\dfrac{3}{8}$ và $26a+11b+9\ne 0\Rightarrow r\left( A \right)=2<r\left( \overline{A} \right)=3$ nên hệ vô nghiệm.

+ Nếu $m=\dfrac{3}{8}$ và $26a+11b+9=0\Rightarrow r\left( A \right)=r\left( \overline{A} \right)=2<3$ hệ có vô số nghiệm phụ thuộc một tham số

 

Cụ thể $\left\{ \begin{gathered} x + 2y + \dfrac{3}{8}z = a \hfill \\ - 11y - \dfrac{{11}}{8}z = - 2a + 1 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} y = - \dfrac{5}{{11}}a - \dfrac{3}{{11}} + x \hfill \\ z = \dfrac{{56}}{{11}}a + \dfrac{{16}}{{11}} - 8x \hfill \\ \end{gathered} \right.,x \in \mathbb{R}.$

0

Câu trả lời của bạn

Để bình luận, bạn cần đăng nhập bằng tài khoản Vted.

Đăng nhập

Không phải câu trả lời hoặc câu hỏi bạn đang tìm kiếm? Hỏi câu hỏi của riêng bạn.